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Introduction

What are thermally-induced dynamics?

> Structural dynamics resulting from time-varying temperature
distributions typically initiated during orbital eclipse
transitions.

What are the consequences of the disturbances?

Due to conservation of angular momentum, motions of
flexible structures result in rigid body rotations of the entire
satellite leading to pointing errors and upsetting stability.

What types of spacecraft structures are typically
susceptible?

> Booms (particularly STEM-type)

> Solar arrays (rigid panel and flexible blanket)
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Classification of thermally-
Induced dynamics

e Thermoelastic motions
» Thermal snap (or Thermoelastic shock)
* Thermally-induced vibrations
> Thermal flutter

o Stick-slip motions
> Thermal creak



Satellite attitude
disturbances
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Example:
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Flight data

Thermal snap
disturbance

Acceleration (arcseconds/second?)

-5 -15 15 ® 45 kLl . 108 135 183
Time Relative to 0 Km Sunrise (seconds)

UARS attitude acceleration (sunrise)

Reference: Lambertson, M., Underwood, S., Woodruff, C., and Garber, A., "Upper Atmosphere
Research Satellite Attitude Disturbances During Shadow Entry and Exit,” AAS 93-319, 1993.
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Reference: Foster, C.L., Tinker, M.L., Nurre, G.S., and Till, W.A., "The Solar Array-
Induced Disturbance of the Hubble Space Telescope Pointing System," NASA TP-3556,

May 1995.



Previous research

Boley (1956)
Beam (1969)
Zimbelman (1990)

Thornton and students (1990’s)
> Kim, Chini, and Gulick
> Foster, Blandino
> Johnston



Research objectives

Develop an understanding of thermally-induced
structural motions of rigid panel solar arrays

Develop analytical and computational models to
predict solar panel thermal-structural performance

Investigate interactions between thermally-induced
motions of flexible appendages and satellite attitude
dynamics

Perform laboratory experiments



Analytical studies

Orbital eclipse heating
Appendage thermal response
Appendage thermal-structural response

Coupled satellite dynamics response



Orbital eclipse heating

Eclipse regions: o Semeee. oot

= Umbra (full shadow)
« Penumbra (partial shadow)

Solar heat flux vs time
(Sunrise eclipse transition)
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Penumbral heating

calculation

Total Eclipse Umbra/ Penumbra
Boundary

Earth < S . I
Geometry of Sun/Earth " ) e N A ot
disks as seen
by satellite ¢ d . e
Penumbral Transition g
Sun Satellite
Earth Sun
(partial eclipse)
Penumbra / Full Sunlight Full Sun
Boundary

Earth Earth Sun

Incident solar heat flux is proportional to
fractional area of Suns disk visible to satellite

Reference: Baker, R.M., Astrodynamics: Applications and Advanced Topics,
Academic Press Incorporated, New York, 1967.




Thermal analysis

e One-dimensional transient heat transfer model

e Time-varying incident solar heat flux from orbital
eclipse heating analysis

e Solutions obtained using commercially available FEA
program (ABAQUS)
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Thermal-structural analysis

e Temperature distribution

» Results from thermal analysis
> Assume temperature varies through panel thickness only

e Thermal moment

> Acts as forcing term in solar panel equations of motion
» Enters problem through structural boundary conditions

M1 (t) = o] Eage(T(z,t)- Trer )2 ]dA

A tfc¢ A+Z
P 5
M1 (6) = Ered o roiotie Oty -
T fc cte,fcg 2 Solar Panel

Cross-section



Satellite dynamics analysis

o Simple satellite model: hub-appendage system

» Rigid hub with cantilevered flexible appendage
> Hybrid coordinate dynamical model
> Only planar dynamics considered

e L LT

! Flexible Appendage
(Solar Panel)

>

»




Problem formulation

 Energy methods approach

> Start with kinetic and potential energies for system
» Thermal terms enter through potential energy

e Governing equations

» Generalized form of Lagrange’s equations used to obtain
equations of motion and boundary conditions

> Equations of motion for hub and appendage are coupled

e Solutions
> Quasi-static
» Dynamic



Equations of motion
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Discrete form of
eguations of motion

Assumed solution:

v(x,t) = v (x,t)+ & o OF (%)

n=1
a..(1-n°)DT(t
cel 2h) ) e quasi-static solution
d.(t) = generalized modal coordinates

f.(X) = shape functions
(cantilever beam eigenfunctions used)

,where: v, (xt)=-

Discrete equations of motion:

N

I
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Disturbance torgue

Equation of motion for rigid hub:

11]1T2q_' dA(F{)+x)— dx=T(t)

Disturbance torque due to appendage motions:

T(t) =- [Tos(t) + Ton(®)]

r Aaadl-n?)aRl® L4 OTDT ()
2h 3 4y TP
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Characteristic parameters

Revised Boley parameter

Temperature difference rise time

Period of fundamental mode of vibration
for hub-appendage system

Dynamic amplification factor

Quasi-static response

Thermally-induced vibrations response



Numerical studies

e Solar panel thermal response

> Solutions obtained using finite element analysis
> Results

« Surface temperatures

e Through-the-thickness temperature difference

« Time derivatives of temperature difference

o Satellite dynamics response

> Solutions obtained by numerical integration of discrete
equations of motion using central differences method
> Results
» Flexible appendage displacements, velocity, and acceleration

* Rigid hub rotation angle, angular velocity, and angular
acceleration



Solar panel thermal response
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Parameters:
Sunrise eclipse transition
600 km circular orbit

Results:
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Flexible appendage response

.A—”"’—‘Tv(u)
\/

Appendage parameters:
L =9m

W=3m

F,=0.5Hz (tg =2 s)

B, =30

Results:

DT =11K

Tip displacement, v =-0.4 m
V.. IV =1.0

max’ ¥ gs,max

Peak velocity = -0.03 m/s

Quasi-static response
Thermal snap transients
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Rigid hub response

Hub parameters:
R,p=1m
Mass = 5000 kg

Ihub/Iappendage: 1.0

Results:
Torque = 1/-.6 N-m
Attitude angle, q = 0.01rad

qmax/qqs,max =10
Attitude rate = 9E-4 rad/s
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Displacement (m)

Torque (N-m)
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Experimental studies

* ODbjectives

> Characterize the thermal-structural response of representative
solar panel test articles

> Investigate rigid panel solar array ‘thermal snap’ phenomenon
> Study deployment hinge support effects
*» Provide data for validation of analytical models

o Test Articles
» Honeycomb sandwich panels
» High aspect ratio panel (L/W = 8)
* Low aspect ratio panel (L/W = 2)
> TRACE solar panel assembly



L aboratory test set-up

Schematic of test set-up

Solar Panel Test Article Backstop

Infrared Lamp Array /

Mounting
A Plate
//
15m
N X
Laser Displacement Sensor Platform Structural Support

Photograph showing
solar panel in test fixture




Solar panel test article

ETU hardware from TRACE satellite
Overall size: 1 mx0.5m
Aluminum honeycomb sandwich panel substrate

Deployment hinge supports

Stiffener

De_ployment Restraint
Hinges (2) estrain

Mount

I_I/
Antenna
— Mount
\ ’\ Bumper Stop (2)

Connector Mount

Hinge
Mount



Deployment hinge

Pin-Detent Latching Mechanism Clevis
(attaches to solar panel)

Damper

Solar Panel

Tang

Torsion Spring (attaches to satellite)



Structural supports

Deployment
hinge supports

Rigid supports




Support characterization tests
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Thermal response

Single Thermal Cycle Test
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Thermal response - cont.
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Structural response
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Analysis of experiments

* Objective is to predict the thermal-structural response
of the solar panel to simulated orbital eclipse
transition heating.

* Finite element analysis

> Solutions obtained using commercially available finite
element program (ABAQUS)

Three-dimensional model required
* Non-uniform radiant heating
« Plate bending behavior

Utilized general purpose shell elements

Sequentially-coupled thermal-structural analysis using same
mesh for both analyses

Predictions validated through comparison with test data

v

v

v

v
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Summary

e Thermally-induced dynamics of spacecraft structures
are driven by time-varying temperatures distributions
resulting from sudden changes in thermal loading.

» Classification of thermally-induced dynamics

> A quasi-static response consists of rapid, non-oscillatory
bending motions and results in a thermal snap disturbance.

» Thermally-induced vibrations consist of a quasi-static
deformation with superimposed stable oscillations and result in
a harmonic disturbance at the fundamental frequency of the
appendage. Thermal flutter is an unstable thermally-induced
vibrations response.

» Thermal creak disturbances result from thermally-induced
stick-slip motions at frictional interfaces in mechanisms/joints.



Summary -cont.

e Analytical Studies

> The temperature difference and its first and second time
derivatives are key parameters for predicting thermally-induced
dynamics.

> The ratio of the temperature difference rise time and the period of
the fundamental mode of vibration can be used to assess the
potential for a thermally-induced vibrations response.

 Experimental studies

» The TRACE solar panel test article exhibits a quasi-static
structural response to simulated eclipse transition heating with
thermal snap acceleration transients during heat-up / cool-down.

» Deployment hinge nonlinearities influence solar panel thermal-
structural behavior and result in thermal creak disturbances.

» Three-dimensional finite element analysis is required to predict
solar panel behavior accurately in the laboratory.
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